aup.Proposer.SpearmintProposer¶
Re-implementation of Spearmint. Most of the Spearmint code has not been changed Mainly wrap main.py
Be aware - all variables are vectorized except size=1 case. (different from spearmint original implementation)
The original source is forked from Spearmint github commit 70309f0.
Configuration¶
General parameters¶
Name |
Default value |
Explanation |
---|---|---|
proposer |
spearmint |
|
engine |
GPEIOptChooser |
|
engine_config |
Options for spearmint chooser |
|
grid_size |
20000 |
Option for spearmint |
n_samples |
Total number of trials to sample |
|
random_seed |
0 |
[Optional] seed for random generator |
spearmint_dir |
spearmint |
Spearmint working directory |
Specific parameters for parameter_config
¶
Name |
Explanation |
---|---|
name |
name of the variable, will be used in the job config, i.e. training code |
type |
type of the parameter to be sampled: choose from “float”,”int”,”choice” |
range |
range of the parameter. For “choice”, list all the feasible values |
APIs¶
-
class
SpearmintProposer
(config)[source]¶ Bases:
aup.Proposer.AbstractProposer.AbstractProposer
-
save
(path)[source]¶ Save Proposer state to path.
Some proposer can not generate new parameters after saving.
- Parameters
path (str) – path to save
-