aup.Proposer.RandomProposer

Random sampling of the parameters

Configuration

General parameters

Name

Default value

Explanation

proposer

random

n_samples

Total number of trials to sample

random_seed

0

[Optional] seed for random generator

Specific parameters for parameter_config

Name

Explanation

name

name of the variable, will be used in the job config, i.e. training code

type

type of the parameter to be sampled: choose from “float”,”int”,”choice”

range

range of the parameter. For “choice”, list all the feasible values

APIs

class RandomProposer(config, random_seed=0)[source]

Bases: aup.Proposer.AbstractProposer.AbstractProposer

Random proposer

Parameters
  • config – experiment configuration contains the details searching space

  • random_seed – default random seed if not in config

get_param(**kwargs)[source]

Get the next parameter set :return: parameter name and value pairs in dict

reload(path)[source]

Reload Proposer state from path

Parameters

path (str) – path to reload

save(path)[source]

Save Proposer state to path.

Some proposer can not generate new parameters after saving.

Parameters

path (str) – path to save

static setup_config()[source]

Set up experiment configuration :return: experiment config in dict.

verify_config(config)[source]

Verify the input configuration is enough for the proposer

Parameters

config (dict) – Experiment configuration of parameter_config

Returns

config

Return type

dict