aup.Proposer.HyperbandProposer¶
The code is based on hyperband github commit a632209.
See license for redistribution.
Configuration¶
General parameters¶
Name |
Default value |
Explanation |
---|---|---|
proposer |
hyperband |
|
random_seed |
0 |
[Optional] seed for random generator |
max_iter |
81 |
Max iterations (e.g. epochs) per configuration |
eta |
3 |
downsampling rate, choose 3 for training from scratch |
skip_last |
0 |
whether skip last element |
engine |
random |
engine to generate configurations for hyperband |
Specific parameters for parameter_config
¶
Name |
Explanation |
---|---|
name |
name of the variable, will be used in the job config, i.e. training code |
type |
type of the parameter to be sampled: choose from “float”,”int”,”choice” |
range |
range of the parameter. For “choice”, list all the feasible values |
In the returned job_config, it has n_iterations
and tid
for tracking the HPO process.
n_iterations
marks how much resource should be allocated for this round of training (e.g. epochs);
tid
is used to recover the previous trained model if needed (i.e. finetune)
APIs¶
-
class
HyperbandProposer
(config)[source]¶ Bases:
aup.Proposer.AbstractProposer.AbstractProposer
-
save
(path)[source]¶ Save Proposer state to path.
Some proposer can not generate new parameters after saving.
- Parameters
path (str) – path to save
-